141 research outputs found

    Toward an idiomatic framework for cognitive robotics

    Get PDF
    Inspired by the "Cognitive Hour-glass" model presented in https://doi.org/10.1515/jagi-2016-0001, we propose a new framework for developing cognitive architectures aimed at cognitive robotics. The purpose of the proposed framework is foremost to ease the development of cognitive architectures by encouraging and mitigating cooperation and re-use of existing results. This is done by proposing a framework dividing the development of cognitive architectures into a series of layers that can be considered partly in isolation, and some of which directly relate to other research fields. Finally, we give introductions to and review some topics essential to the proposed framework.Comment: 16 pages, 24 figure

    Toward an idiomatic framework for cognitive robotics

    Get PDF
    Inspired by the “cognitive hourglass” model presented by the researchers behind the cognitive architecture called Sigma, we propose a framework for developing cognitive architectures for cognitive robotics. The main purpose of the proposed framework is to ease development of cognitive architectures by encouraging cooperation and re-use of existing results. This is done by proposing a framework dividing development of cognitive architectures into a series of layers that can be considered partly in isolation, some of which directly relate to other research fields. Finally, we introduce and review some topics essential for the proposed framework. We also outline a set of applications

    A Quantitative Parametric Study on Output Time Delays for Autonomous Underwater Cleaning Operations

    Get PDF
    Offshore pipelines and structures require regular marine growth removal and inspection to ensure structural integrity. These operations are typically carried out by Remotely Operated Vehicles (ROVs) and demand reliable and accurate feedback signals for operating the ROVs efficiently under harsh offshore conditions. This study investigates and quantifies how sensor delays impact the expected control performance without the need for defining the control parameters. Input-output (IO) controllability analysis of the open-loop system is applied to find the lower bound of the H-infinity peaks of the unspecified optimal closed-loop systems. The performance analyses have shown that near-structure operations, such as pipeline inspection or cleaning, in which small error tolerances are required, have a small threshold for the time delays. The IO controllability analysis indicates that off-structure navigation allow substantial larger time delays. Especially heading is vulnerable to time delay; however, fast-responding sensors usually measure this motion. Lastly, a sensor comparison is presented where available sensors are evaluated for each ROV motion’s respective sensor-induced time delays. It is concluded that even though off-structure navigation have larger time delay tolerance the corresponding sensors also introduce substantially larger time delays

    Re-Identification of Giant Sunfish using Keypoint Matching

    Get PDF
    • …
    corecore